

State Water Resources Control Board Division of Drinking Water

March 8, 2024 PWS No. 3110034

Don Elias General Manager P.O. Box 6857 Auburn, CA 95604

2024 COMPLIANCE INSPECTION OF THE CHRISTIAN VALLEY PARK COMMUNITY SERVICES DISTRICT PUBLIC WATER SYSTEM (PWS NO. 3110034)

On February 15, 2024, Michael Tolin, P.E. of the California State Water Resources Control Board Division of Drinking Water, accompanied by Christian Valley Park Community Services District staff, inspected the Christian Valley Park Community Services District public water system (PWS No. 3110034).

Attached to this letter you will find a copy of the Compliance Inspection Report that documents inspection findings. Please review the enclosed report and respond to the items listed in both the report and the Compliance Inspection Findings section (Appendix A) by the indicated response deadlines.

If you have any questions, or if we can be of any assistance, please do not hesitate to contact Michael Tolin at Michael.tolin@waterboards.ca.gov or by telephone at (916) 552-9995.

Sincerely,

Austin Peterson, P.E.

Sacramento District Engineer

Division of Drinking Water

STATE WATER RESOURCES CONTROL BOARD

Enclosure,

cc. Michael Tolin, P.E. – Water Resource Control Engineer, DDW, SWRCB

State Water Resources Control Board Division of Drinking Water Sanitary Survey Report

Purveyor Christian Valley Park Community Services District ((District) System Number 3110034
Person(s) Contacted/Position Jason Hoffman (Contract Operation	erator)
Date of Inspection February 15, 2024	Reviewing Engineer Michael Tolin P.E.
Last Annual Inspection March 29, 2022, M. Burgess	District Engineer Austin Peterson P F

EXECUTIVE SUMMARY

MCL Exceedances:

Has the water system had a water quality exceedance since the last inspection (Yes/No): No Has the water system had an operational failure since the last inspection (Yes/No): No If the water system had a water quality exceedance or an operational failure since the last inspection, has DDW issued enforcement actions (Yes/No): No Short discussion: N/A

Permit:

Is the water system permit up to date (Yes/No): No

Does the water system have pending permit or permit amendment(s) application with DDW (Yes/No): No If the water system needs new permit(s) or permit amendment(s), has water system submitted a permit amendment application to DDW (Yes/No): Yes.

Short discussion: The permit is not up to date for the current water system operations. The Division received a permit amendment request form dated December 12, 2020, requesting the Division to "replace existing 1.5 mgal in ground covered reservoir with two 750,000 gallon welded steel tanks. Project also includes site grading/piping improvements, upgrading water plant SCADA system, new chemical feed pumps and replacement of filter feed pumps." The Division still requires other supporting information including, but not limited to, CEQA, Reservoir Data Sheets, and NSF Std. 60/61 compliance data.

Improvements:

Does the water system have on-going or future planned improvement projects (Yes/No): <u>Yes</u> If the water system has on-going or future planned improvement projects, do they need a permit from DDW (Yes/No): <u>Yes</u>, see discussion for more details.

Short discussion: <u>During the inspection</u>, the <u>Operations staff mentioned that there were plans to conduct a filter cleaning</u>, <u>media evaluation</u>, and an evaluation and/or repair of the <u>sedimentation basin</u> and <u>tube settlers</u>.

In addition, the water system needs to submit a permit amendment request (see appendix) for the two distribution system reservoirs and a Reservoir Data Sheet (see appendix) for each storage reservoir. Reportedly, Christian Valley Park CSD is in the process of completing the Reservoir Data Sheets for both tanks and will be forthcoming.

Noted Deficiencies:

Has the water system responded to previously noted deficiencies (Yes/No): Yes

Did the inspection reveal new deficiencies (Yes/No): Yes, see discussion for more details.

Short discussion: Before the Inspection, the Operator sent a text mentioning a post-chlorination injection pump became "air-locked" and failed to suction hypochlorite chemical. As a result, the free chlorine residual dropped to 0.2 mg/L of free chlorine. The Operator was able to correct the situation in a timely manner.

During the Inspection, there were several issues that were found during the inspection. The Deficiencies have been summarized in Appendix A: Compliance Inspection Findings.

Other:

Short discussion: The Operator for the system has been very cooperative and responsible in responding to the deficiencies that were revealed during the inspection. At this time, the Operator is assembling documentation and completing plant and system updates to mitigate and/or correct deficiencies discovered during the inspection. Most of the outstanding issues were addressed in a 2/24/24 email from the Operator.

A. INTRODUCTION

1. Permit Status

Full Permit 78-008 was issued on February 6, 1977.

Amendment(s) No amendments

Are the permit provisions complied with? Yes, no special provisions.

Is the permit up to date? No, there have been changes to filters at treatment plant, addition of backwash water recycling, and the replacement of the in-ground tank with two welded steel tanks. The Water system is required to submit along with the previously submitted permit amendment request, the CEQA documentation, the reservoir data sheets, and any other supporting documentation for the two storage reservoirs (Tanks 01 and 02). It is anticipated that the water system will provide the additional documentation at a later date.

List data sheets on file (permit, files, etc.) <u>Distribution, raw water diversion, transmission mains, booster station, disinfection, and filter plant.</u>

2. Changes in System

Since last annual inspection Replaced in-ground storage tanks with welded steel tanks, installed new booster station, and installed new SCADA system. Title 22 Sec 64556(a)(1) requires all distribution storage reservoirs greater than 100,000 gallons to be permitted.

Planned future changes None

3. Consumer and Production Data

Production Data Based on Annual Reports to Department

Table 1 - Finished Water Produced, Purchased or Sold^A

Year	Service Connections	Population		Demand (MG)						
I Cai	(metered)	Fopulation	Max	Day	Max Mo	onth	Annual	Demand (GPM) ^B	Demand (GPM) ^C	
			Produced	Date	Produced	Month	Produced	(GFW)	(GFWI)	
2013	608	2,000	1.002	7/03/2013	23.2	July	153.1	696	1,044	
2014	615	1,800	1.001	7/21/2014	18.42	July	124.42	695	1,043	
2015	619	1,800	0.749	8/31/2015	14.97	Aug	105.32	520	780	
2016	621	1,800	0.844	8/3/2016	19.02	Aug	112.61	586	879	
2017	623	1,800	0.905	8/10/2017	20.269	Aug	125.77	628	943	
2018	623	1,800	0.873	8/1/2018	19.585	July	128.184	606	909	
2019	623	1,800	0.808	8/5/2019	20.8	Aug	129.36	561	842	

2020	627	1,800	0.798	9/07/2020	26.5	Aug	151.86	554	831
2021	631	1,800	0.800	7/13/2021	20.66	July	136.65	556	833
2022	631	1,800	0.780	8/24/2022	18.71	Aug	129.31	542	813

Notes

Discussion and appraisal The reported water production is based on the master meter located at the outlet from the filters. The average maximum day demand over the past ten years is 594 gpm. The maximum day demand was determined in accordance with Chapter 16. California Waterworks Standards, §64554. New and Existing Source Capacity. The max day demand scenario is based on the highest reported daily max day demand or calculated from the highest monthly max day demand in the last ten years. The maximum day demand for water system was 696 gpm, and the peak hourly demand for water system is 1,044 gpm based on the data provided in the 2013 electronic Annual Report.

B. SOURCE DATA

Table 2 - Source Water Data

Sources	Status	Capacity	Comments						
Surface Wate	Surface Water								
Boardman Canal	Active	1,380 gpm	The capacity is based on the current filter capacity of the District's treatment plant.						
Groundwater-	- None								
	Total	1,380 gpm							

Discussion and appraisal

The District's source capacity is based on the capacity of the surface water treatment plant. Although the District does not have a water supply agreement with Placer County Water Agency (PCWA) that guarantees a minimum supply of raw water, based on PCWA's source capacity within Zone 1, which serves the District. Reportedly, PCWA should be able to supply the District with at least 1,380 gpm continuously well into the future. In order to meet Waterworks Standards for source capacity, a water system must have sufficient source capacity to reliably supply the highest maximum day demand over the past ten years. The highest maximum day demand reported by the District over the past ten years was 696 gpm during 2013. The District's total source capacity is sufficient to meet maximum day demands, and even with the largest filter out of service, the District's source capacity of 852 gpm is still sufficient to meet maximum day demands.

C. STORAGE DATA

Table 3 – Storage Tank Data

Name	Type	Capacity	Zone	Comments
Tank 01	Welded Steel	783,000 gallons	Main	The two tanks are very similar in construction and equipment. However, they vary slightly

^A Data from electronic annual water system reports

^B Per Section 64554, maximum day demand determined by reported max day demand, when maximum day demand was not reported, maximum month was used to calculate max day demand, when maximum month was not reported annual demand was used to calculate max day demand.

^C 1.5 times max day demand

Tank 02	Welded Steel	774,000 gallons	Main	in rated capacity. There were no visible signs of damage or deterioration of the tank coating in either tank; the apex vents on each tank were visible from ground level. The vents were found to be screened and the respective overflow lines discharge through a flapper valve into a drop inlet.
Booster Tank	Welded Steel Pressure Vessel	5,700 gallons (see comments)	Upper	Air cushion is maintained through manual operation of an air compressor by the operator. The water level in the pressure tank is checked weekly. <u>The Division does not consider Hydropneumatic tanks as storage.</u>
Total		1.557 MG		

Are all data sheets completed and on file? No, new storage tank data sheets needed

Are ODW coating procedures adhered to? Reportedly.

Discussion and appraisal: <u>Title 22 Sec 64556(a)(1) requires all distribution storage reservoirs greater than 100,000 gallons to be permitted.</u> The Water system is required to submit along with the previously submitted permit amendment request, the CEQA documentation, the reservoir data sheets, and any other supporting documentation for the two storage reservoirs (Tanks 01 and 02).

Due to recent wildfires in the State of California, the Division needs water systems to provide latitudinal and longitudinal coordinates of water storage tanks for emergency fire fighting purposes. Since the Water system has not submitted reservoir data sheets for the two storage reservoirs, the water system shall complete reservoir data sheets that include the latitudinal and longitudinal coordinates for each tank and submit the data sheets to the Division.

According to the previous inspection report, the two new tanks appeared to be in good condition and met Waterworks Standards for construction with one exception. The roof hatches on both tanks had a small stub of open pipe on the side. The previous Operator, Gerry LaBudde, reported that he installed threaded pvc caps on each pipe and provided photos showing the alteration.

Current Waterworks Standards require that a water system serving less than 1,000 service connections must have storage capacity equal to or greater than the maximum day demand or total source and storage capacity equal to at least twice the maximum day demands. Based on Division of Drinking Water's (Division) records, the District's highest reported maximum day demand over the past ten years was 1.026 MG during 2012. The District's total available storage capacity is 1.557 MG; therefore, the District is able to meet current Waterworks Standards through storage capacity.

D. TREATMENT

1. Surface Water Sources

Treatment classification: The surface water treatment plant is currently classified as conventional filtration with a maximum filtration rate of 1,380 gpm (1.99 MGD).

Describe treatment process: Water is supplied under gravity to the treatment plant flocculation chambers from a diversion on the Bowman Canal upstream from the PCWA Bowman treatment plant. Polymer coagulant is fed along with a soda ash solution in an inlet trough just prior to the flocculation basins.

A third feed line is available to supply Alum. Water overflows from the first flocculation basin into a second flocculation basin and from there into a sedimentation basin that includes a small area equipped with tube settlers under the overflow weirs. The overflow weirs supply water through an outlet trough to a wet well where three variable frequency drive (VFD) turbine pumps supply water to the District's filters. A sodium hypochlorite solution is fed into the wet well. The filter plant

features three pressure filter vessels, two 8-foot diameter by 22-foot long and one smaller 6-foot diameter by 18-foot long, which is not typically used. Each filter is equipped with fixed surface washers and reportedly contains 12 inches of anthracite and over 18 inches of sand filter media. The effluent from the filters is injected with a sodium hypochlorite solution then supplied to Tank 01 through approximately 1,300' of parallel 6-inch diameter and 8-inch diameter transmission mains followed by an additional 1,300 feet of 6-inch diameter transmission main only. Water flows out of Tank 01 into Tank 02, and a booster station with a 10 hp centrifugal pump and a 10 hp turbine pump supplies water from the Tank 02 outlet to the Upper Zone. The Main Zone is fed from the Tank 02 by gravity flow.

Discussion and appraisal <u>During the Inspection the tube settlers were covered with sludge.</u> In addition there appeared to be depressions in the tube settlers that may signify damage. It also appeared that there was significant build-up of sludge on the tube settlers, the overflow weirs, and the overflow trough leading to the filters. The sludge build-up is concerning to the Division, because sloughing of the sludge may occur. If significant sloughing of sludge does occur, it could lead to plugging or damage of the filter feed pumps, and/or overloading the filter(s). This may lead to filtration problems such as break-through, shortened filter runs, and/or mudballs in the media.

Reportedly, the sludge and debris has been removed from the tube settlers, the overflow weirs, and the overflow trough leading to the filters. However, the Division will need photographic evidence to confirm that the work has been completed. The water system shall provide pictures that show that the cleaning was accomplished.

Filtration:

Describe filtration removal credits granted by the Division: A conventional filtration system using dual media filters must be capable of providing 2.5-log (99.7%) removal of *Giardia* cysts and 2-log (99%) removal of viruses.

Describe applicable filtration performance standards under Section 64653: Performance standards require that the turbidity level of the filtered water should be equal to or less than 0.3 NTU in 95 percent of the measurements taken each month, shall not exceed 1 NTU for more than one continuous hour, and shall not exceed 1.0 NTU for more than eight consecutive hours.

Are filtration performance standards met? Based on monthly treatment records submitted to the Division by the District, filtration performance standards are consistently met. Filtered water turbidities are consistently below 0.1 NTU.

Describe filtration monitoring requirements (Section 64655): Turbidity measurements of the combined filter effluent (CFE), must be collected before the storage tank, at least once every four hours. Continuous monitoring can be used if the supplier validates the accuracy of the measurements on a weekly basis. Systems serving less than 500 persons per day may reduce the CFE sampling to one grab sample per day. Turbidity measurements of the individual filter effluent must be conducted continuously and recorded at least once every 15 minutes.

Are filtration monitoring requirements met? Reportedly, the District utilizes in-line turbidimeters to continuously measure the individual filter effluent turbidity as well as the combined filter effluent turbidity.

Are individual filters monitored? Yes, additionally, each filter cell is equipped with a sampling port that can be used to monitor an individual cell as well.

Type and model of turbidimeters used The District utilizes Hach 1720E, in-line turbidimeters to monitor the individual filter effluent from each filter and the combined filter effluent prior to the storage tank. A Hach SS6 surface scatter turbidimeter is used to monitor the raw water turbidity.

How often are turbidimeters calibrated? The turbidimeters are calibrated at least quarterly. The calibration of the turbidimeters is reported on the monthly treatment records submitted to the Division.

How are they calibrated and what standards are used? The in-line turbidimeters and 2100N bench top turbidimeter are calibrated with a formazin standard quarterly. The in-line turbidimeters

<u>are checked versus the bench top turbidimeter weekly, and the bench top turbidimeter is checked</u> versus secondary standards at the same time.

Discussion and appraisal The District calibrates and verifies the in-line turbidimeters and bench top turbidimeter as required. According to Division records, the last filter inspection was conducted in 2018. Reportedly, the Water system is planning to conduct filter examination(s) for the filters.

Disinfection:

Type 12.5% sodium hypochlorite solution (Sani-chlor)

Capacity 1.25 gph maximum; 0.2 gph minimum

Standby pumps A replacement pump is kept at the treatment plant along with repair kits.

"CT" values

Residuals Lowest residual reported over the last two years was a winter value of 0.20 milligrams per liter (mg/L) during the time of the Inspection during the failure (vapor lock) of the post chlorination injection pump and a summer value of 0.5 mg/L during July of 2022.

Describe applicable disinfection performance standards (Section 64654): <u>Disinfection must be</u> sufficient to provide a 0.5-log inactivation of *Giardia* cysts and a 2-log inactivation of viruses. Water delivered to the distribution system must contain a minimum of 0.2 mg/L free chlorine residual. A detectable level of free chlorine residual must be maintained in the distribution system.

Are disinfection performance standards met? The new storage tanks are normally operated in series with a top inlet and bottom outlet approximately 120° from the inlet in Tank 01 and Tank 02. Based on tracer studies performed on similar tank configurations this results in an estimated short-circuiting factor of 0.3. Based on a maximum summer-time flow rate of 900 gpm (two pumps operating at maximum output), a maximum pH of 8.8, a minimum temperature of 14 °C, and a minimum chlorine residual of 0.60 milligrams per liter (mg/L), the District provides a minimum 5.0-log inactivation of *Giardia* cysts during the summer. Based on a maximum winter-time flow rate of 600 gpm (estimated maximum winter flow rate), a maximum pH of 8.8, a minimum temperature of 5 °C, and a minimum free chlorine residual of 0.50 mg/L, the District provides a minimum 3.6-log inactivation of *Giardia* cysts during the winter. The amount of CT (chlorine residual X time) necessary to provide the required 2-log inactivation of viruses is much less; therefore, the District should be able to meet the inactivation requirements under all circumstances, including having a tank out of service. Additionally, the District's monthly treatment records show that the District consistently provides much more than the required *Giardia* cyst and virus inactivation.

Describe disinfection monitoring requirements (Section 64656): Temperature, pH, disinfectant contact time, and residual disinfectant concentration must be recorded. If the population is less than 3,300, the residual disinfectant concentration leaving the plant can be measured once a day.

Are disinfection monitoring requirements met? Yes, the District continuously monitors and records the chlorine residual leaving the treatment plant using a Hach CL17 in-line chlorine residual analyzer. The pH is also measured continuously and recorded daily. The temperature is measured and recorded daily along with the flow rate through the treatment plant.

Describe flow measuring and recording equipment: The combined filter effluent flow is metered. Is filter to waste provided? Yes, reportedly for three to four minutes following start-up (rare occurrence, usually only after filter inspections).

Describe backwash cycle Each filter cell is individually backwashed with water from the other seven cells at a reported rate of 600 gpm, which corresponds to a backwash loading-rate of 13.6 gpm/ft² for the large filters. Surface wash is provided through a double check valve back flow prevention device at a reported rate of 70 gpm during the first four minutes of the backwash cycle, which can last from 6 to 10 minutes depending on operational variables.

Frequency of backwashing and/or what initiates a backwash: The filters are backwashed based on a rise in individual filtered water turbidities. Reportedly, filtered water turbidities rise quickly once breakthrough is observed (turbidity > 0.04 NTU). The filters are typically backwashed every four to seven days depending on flow rates and raw water turbidity.

Is backwash water recycled? Yes, the District recycles backwash water to the inlet channel at a maximum rate of 34 gpm which is less than the 10% of the treatment plants minimum flow rate.

Are filters equipped with surface or subsurface wash? Yes, stationary surface washers.

For uncontrolled watershed

Alarm(s) See table below

Standby replacement The District maintains a back-up pump that could be used to inject any of the treatment chemicals and pump repair kits.

Redundant backup None

Standby power: A 60-kW propane generator is tested every two months. It has an autostart triggered by a loss of power.

Table 4 – SCADA ALARMS

Parameter	Location	Sample Frequency	Recording	Alarmed (yes/no)	Alarm Set point	Alarm Result
					6.8 feet	High: Text notification
Water Level	Floc #1	Continuous		Yes	6.9 feet	High-high: text & close raw water valve
	Filter Feed				7.0 feet	High: Text notification
Water Level	Wet Well	Continuous	Yes	Yes	7.2 feet	High-high: text and close raw water valve
Pump Oper.	Filter Feed	Continuous		Yes	On/off	Text notification
Pressure	Filter Feed	Continuous	Yes	Yes	100 psi	High:Shuts down pumps
Streaming Current	Floc #1	Continuous	Yes	Yes	55 eV/-55 eV	High/Low: Text notification
Power	PLCs	Continuous		Yes	Power fail	Text notification
Air Pressure	Headworks	Continuous		Yes	30 psi	Text notification
IFE	Ind. Filters	Continuous	Yes	Yes	0.2 NTU	High: Text notification
CFE	Filter	Continuous	Yes	Yes	0.2 NTU	High: Text notification
OIL	Manifold	Continuous	165	103	0.3 NTU	High-high: Text & filter pump stop
Water Level	Backwash Tank	Continuous		Yes	7.5 feet	Low: Text notification
Free Chlorine Residual		Continuous	Yes	Yes	High-high: 3 mg/L High: 2.5 mg/L Low: 0.5 mg/L Low-low:0.2 mg/L	High-high: Text High: Text Low: Text Low-low: Text & Filter pump stop
Operation	Booster Station	Continuous		Yes	Pump failure	Failure: Text notification
Water Level	Storage Tanks	Continuous	Yes	Yes	High: 32.3 feet Low: 29.0 feet	High: Text & Filter pump stop Low: Text
Intrusion	Storage Tanks	Continuous		Yes	Open	Text notification

Describe operating criteria (Section 64660): <u>Dual media pressure filters are allowed to operate at no more than 3.0 gpm/ft²</u>. Filtration rates are to be increased gradually after a backwash cycle. Following backwash or any interruption event, the individual filter turbidity should not exceed <u>2.0 NTU at any time during the first 4 hours of operation</u>, <u>1.0 NTU at any time during the first 4 hours following 90% of the interruptions</u>, and 0.5 NTU after 4 hours of operation.

Are operations criteria met? Reportedly, based on reported flow rates, the filter-loading rate does not exceed 3.0 gpm/ft². The turbidity is continuously monitored and typically does not exceed 0.1 NTU. According to Division records, the District has never failed the turbidity standards.

Is an up-to-date Operations Plan on file? Yes, an update to the Operations Plan, dated November 2021, was received by the Division on August 16, 2022.

Describe records maintained of treatment (Section 64662): The District continuously monitors and records the CFE turbidity, IFE turbidity, raw water turbidity, flow rate, free chlorine residual leaving the treatment plant, and storage tank water levels. The District operator measures and records the pH and water temperature each day while at the treatment plant in addition to the chemical usage, backwash events, and maintenance performed

Describe monthly report sent to the Division (Section 64664): The District reports the daily peak raw water and settled water turbidities, combined filtered water turbidity for every four hours, temperature, pH, chlorine residual, coagulant dosage information, and the minimum CT ratio.

Has a watershed sanitary survey (WSS) been conducted? The District submitted a completed Source Water Assessment to the Department on June 29, 2005. The Assessment evaluated the potential contaminating activities (PCAs) within the protection zones surrounding the Bowman Canal and its associated canals and watershed. The PCWA submits a Yuba/Bear River WSS update every five years. The most recent update, dated December 2021, meets all regulatory requirements and is adequate to meet the requirements for the District as well.

Are there significant sewage hazards? The source was considered most vulnerable to sewer collection systems, low density septic systems, and storm drain discharge points among other possible contaminating activities.

Is there significant recreation? There is some camping and fishing within the watershed, but no significant body contact recreation.

Discussion and appraisal Based on the monthly treatment records submitted to the Division, the District consistently meets turbidity performance standards. Filtered water turbidity is consistently less than 0.3 NTU, typically less than 0.1 NTU, and the filter-loading rates appear to be less than the maximum allowable for dual media pressure filters, 3.0 gpm/ft². The District began reporting the pH and temperature of the water in the monthly records in May 2009, and *Giardia* cyst inactivation requirements are consistently met.

2. Groundwater Sources (None)

3. Other Treatment or Blending Facilities

Describe facilities and parameters treated/blended The District feeds a soda ash (sodium carbonate) solution at the filter outlet to prevent corrosion in the distribution system. A soda ash solution is injected post-filtration by a 4 gph metering pump drawing from a 150-gallon capacity plastic drum. The soda ash solution used during the summer is 12% by weight, prepared by dissolving 1 pound of soda ash in each gallon of water; while during the winter, the solution used is 6% by weight, prepared by dissolving ½ pound of soda ash in each gallon of water due to different raw water quality.

E. TRANSMISSION FACILITIES

Describe transmission facilities Approximately 2,600 feet of 6-inch diameter C900 PVC pipe between the treatment plant and Tank 01 and an 8-inch diameter C900 PVC pipe that parallels the 6-inch diameter pipe for the first 1,300 feet from the treatment plant.

Are there low-head lines? Reportedly, no.

F. DISTRIBUTION SYSTEM

1. Pressure Zones

Table 5 - Pressure Zones

Pressure Zone Name	Pressure Range	Water Sources	Storage Capacity	No. of Conn.
Main	60 psi – 110 psi	Treatment Plant	1 MG	~560
Upper	40 psi – 60psi	Booster	0	~40

2. Booster or Reducing Stations

Table 6 – Booster or Reducing Stations

Station	Status	From Zone	To Zone	Comments
Booster	Active	Main	Upper	2-5 hp centrifugal lead/lag pumps, ~300 gpm total, max 1-15 hp centrifugal lag pump, ~450 gpm, max 1-20 hp turbine lag pump, ~600 gpm, max (lead, 45 psi-60 psi; lag, 35 psi-60 psi)

3. Mains

Describe or tabulate: Approximately 95% of the District's distribution system consists of 60 year-old, 4-inch to 6-inch diameter, asbestos cement water mains with the remaining 5% consisting of 10-year-old, 6-inch diameter, PVC water mains.

Discuss leak history during past 12 months (mains and connections) The District reported repairing five service connection leaks/breaks and two main breaks/leaks during 2021.

Are Distribution facilities constructed in accordance with Waterworks Standards? Reportedly, they are.

Describe water main and sewer line separation practices Reportedly, minimum separation requirements are met.

Extent of lead pipes, joints, and/or lead solder used in distribution system There are no known lead pipes or solder.

Distribution Classification The distribution system is classified as a Grade D2 distribution system, which requires a state-certified Grade D2 or higher distribution operator as its chief operator and state-certified Grade D1 or higher shift operators.

4. Discussion and appraisal The distribution system appears to be in good overall condition and is operated by a state-certified Grade D2 chief operator and state-certified Grade D1 shift operators.

G. WATER QUALITY AND MONITORING

1. Bacteriological Monitoring

California Code of Regulations, Title 22, Chapter 15, Article 3: Bacteriological Quality

Description of program Two routine samples are collected each month on a rotational basis from the three routine sample sites identified in the District's Bacteriological Sample Siting Plan (BSSP). Additionally, one raw water bacteriological sample is collected each month.

Sampling plan approved and current? An updated BSSP was received by the Division on May 18, 2012, and approved. However, the BSSP has not been reviewed in over 10 years, and the Water system needs to review the plan, update it as necessary, and resubmit the updated plan to the Division. Note: an updated BSSP has been submitted to the Division on

Controlling factor is population or service connections? Either

Number of samples per month or week required? 2 per month.

MCL violations in past year? None since at least 2007.

Discussion and appraisal The District's BSSP is detailed and sampling is adequate to characterize the bacteriological quality of the water throughout the distribution system. The District has not failed the total coliform standard in at least the past 15 years. It has been 10 years since the District updated their BSSP, and the District needs to review the plan, update it as necessary, and resubmit the updated plan to the Division. Note: an updated BSSP has been submitted to the Division on 3/5/2024. The updated BSSP is under review.

2. Chemical Monitoring

California Code of Regulations, Title 22, Chapter 15, Articles 4 through 17 inclusive: Inorganic Chemicals, Radioactivity, Organic Chemicals, Secondary Drinking Water Standards, et al.

Description of program The District collects samples for source water chemical monitoring after treatment and delivers them to a state-certified lab for analysis.

Discussion and appraisal The District is past due for VOC and SOC monitoring. In previous inspections, a chemical monitoring schedule was enclosed showing the most recent monitoring. The water system will need to conduct the monitoring in compliance with the requirements of Title 22 of the CCR. The tables below include the monitoring requirements.

Inorganic Chemicals

Table 7 – Inorganic Chemical Monitoring Summary

Source	Frequency	Waivers	Last Monitoring Date	Next Monitoring Date	MCL Violations	Comments
Bowman Canal	Annually	None	12-20-2023	2024		

Discussion and Appraisal: The inorganic monitoring is current.

Secondary Drinking Water Standards

Table 8 - Secondary Drinking Water Standards Monitoring Summary

Source	Frequency	Waivers	Last Monitoring Date	Next Monitoring Date	MCL Violations	Comments
Bowman Canal	Annually	None	12-20-2023	2024		

Discussion and Appraisal: Monitoring data for secondary drinking water standards is current.

Nitrates/Nitrites

Table 9 - Nitrates Chemical Monitoring Summary

Source	Frequency	Waivers	Last Monitoring Date	Next Monitoring Date	MCL Violations	Comments
Bowman Canal	Annually	None	12-20-2023	2024		

Table 10 - Nitrite Chemical Monitoring Summary

			Last Monitoring	Next Monitoring	MCL	
Source	Frequency	Waivers	Date	Date	Violations	Comments
Bowman Canal	Triennially	None	12-20-2023	2024		

Discussion and Appraisal: Monitoring data for nitrates and nitrites are current.

Table 11 - Perchlorate Chemical Monitoring Summary

	0	F	Weissens	Last Monitoring	Next Monitoring	MCL	0
	Source	Frequency	Waivers	Date	Date	Violations	Comments
١	Bowman Canal	Triennially	None	07-11-2023	2024		

Discussion and Appraisal: Monitoring data for perchlorate is current.

Regulated Volatile Organic Chemicals (VOC)

Table 12- Regulated VOCs Monitoring Summary

			Last Monitoring	Next Monitoring	MCL	
Source	Frequency	Waivers	Date	Date	Violations	Comments
Bowman Canal	Annual	None	7/20/2005	DUE NOW		See Comments

NOTE: VOC/SOC MCL compliance based on quarterly running annual average per 22CCR64445.1(c)(5)(B)

Discussion and Appraisal: VOCs are overdue. If the monitoring has been completed, the water system shall direct the contract laboratory to submit the results to the Division electronically. If the monitoring has not been completed, the Water system shall collect the samples for analyses, and direct their contract laboratory to submit the results electronically to the Division once completed.

Regulated Synthetic Organic Chemicals (SOC)

Table 13 - Regulated SOCs Monitoring Schedule

			Last Monitoring	Next Monitoring	MCL	
Source	Frequency	Waivers	Date	Date	Violations	Comments
Bowman Canal	Triennial		7/20/2005	DUE NOW		See Comments

NOTE: VOC/SOC MCL compliance based on quarterly running annual average per 22CCR64445.1(c)(5)(B)

Discussion and Appraisal: The monitoring data for all SOCs are overdue. If the monitoring has been completed, the water system shall direct the contract laboratory to submit the results to the Division electronically. If the monitoring has not been completed, the Water system shall collect the samples for analyses, and direct their contract laboratory to submit the results electronically to the Division once completed.

<u>Radiological</u>

Table 14 - Radiological Monitoring Summary

Source	Frequency	Waivers	Last Monitoring Date	Next Monitoring Date	MCL Violations	Comments
Bowman Canal	Quarterly	None	10-10-2016	10-10-2025		

Discussion and Appraisal: The next radiological monitoring needs to be collected in 2025.

Other Chemical Monitoring Requirements

Discussion and Appraisal: None.

3. Disinfection Byproducts Rule (DBPR)

California Code of Regulations, Title 22, Chapter 15.5: Disinfectant Residuals, Disinfection Byproducts, and Disinfection Byproducts Precursors

Description of DBP monitoring program: The District submitted a Stage 2 Disinfection Byproducts (DBP) Initial Distribution System Evaluation (IDSE) Plan on January 10, 2010. In the IDSE they outlined their future monitoring for DBPs based on past monitoring. The District's monitoring plan for DBPs met regulatory requirements and was accepted. The District is required to perform quarterly monitoring for total trihalomethanes (TTHMs) in the distribution system at a site representative of the highest historical levels of TTHMs and for the five regulated haloacetic acids (HAA5s) at a separate site representative of the highest historical levels of HAA5s. The last two years of monitoring are summarized below.

Date 10/29/21 1/18/22 4/20/22 10/12/2022 3/27/2023 6/14/2023 TTHMs. Result 0.0669 0.0485 0.0588 0.056 0.087 0.037 mg/L **RAA** 0.0509 0.0520 0.0573* 0.054* 0.067* 0.060* Result 0.0179 0.0289 0.022 0.037 0.031 .0303 HAA5s, 0.0247 0.030* **RAA** mg/L 0.0265 0.0248* 0.029* 0.033*

Table 15 – Disinfection Byproducts Monitoring

Note: *These RAA's were compiled with less than 4 consecutive monitoring quarters.

The District performed DBP precursor monitoring for the raw and treated water total organic carbon (TOC) and raw water alkalinity monitoring from October 2006 through June 2007 then resumed monitoring in July 2009, completing 12 consecutive months of monitoring in August 2010. The District discontinued monthly monitoring in September 2010. At that time, the average treated water TOC level from the previous 12 months of monitoring was 1.1 mg/L. If the average treated water TOC level does not exceed 1.0 mg/L after one year of monitoring or 2.0 mg/L after two years of monitoring, a water system may reduce monitoring for TOC and alkalinity to one set of samples each quarter. While the District did not have two consecutive years of monitoring for TOC and alkalinity in the raw water and TOC alone in the treated water, they were allowed to reduce monitoring for the DBP precursors to one sample set each quarter based on the prior monitoring from 2006 through 2007 along with the monitoring conducted from 2009 through 2010. The average level of TOC in the treated water over the past four quarters of monitoring has been 1.3 mg/L.

Discussion and appraisal A sample collected on April 15, 2020, did have 0.081 mg/L TTHMs. The District has never exceeded the maximum contaminant level (MCL) for TTHMs or HAA5s of 0.080 mg/L and 0.060 mg/L, respectively, in the running annual average (RAA). However, they do not consistently maintain an RAA for TTHMs that is less than 0.040 mg/L; therefore, the District is required to continue routine monitoring for TTHMs and HAA5s each quarter. According to Division records, there are a number of quarters of DBP monitoring that are missing. The District has submitted the second quarter results for 2023. Prior to that, the most recent monitoring on file is October of 2022. If the monitoring has been completed, the water system shall submit the results to the Division. The District shall continue to monitor quarterly for TTHM's and HAA5's.

4. Lead and Copper Monitoring

California Code of Regulations, Title 22, Chapter 17.5: Lead and Copper

Description of program According to Division records, the District has completed nine rounds of monitoring for lead and copper in the distribution system with no exceedances of the lead and copper 90th percentile action levels (ALs) of 0.015 mg/L and 1.3 mg/L, respectively. Based on past monitoring results, the District was allowed to reduce monitoring for lead and copper in the distribution system to one set of ten tap water samples every three years. Past monitoring is summarized below.

Table 16 – Lead and Copper Distribution System Monitoring

Round	Date	No. Samples	90% Lead (ppb)	90% Copper (ppb)
1	08/08/1994	20	7.00	169
2	08/15/1995	20	8.00	340
3	09/21/1998	10	13.3	303
4	09/27/2002	10	3.00	143
5	09/20/2005	10	7.10	410
6	09/23/2008	10	9.50	241
7	07/28/2011	10	ND	104
8	09/02/2014	10	8.6	54
9	08/06/2017	10	5.0	54
10	08/20/2020	10	3.6	54
11	09/13/2023	10	1.5	ND

Discussion and appraisal: The District did not exceed the 90th percentile Action Level for lead or copper during the September 13, 2023, summer monitoring round (listed as Special Winter Sampling Event). According to the submitted report, there were three monitoring site substitutions. The next set of ten lead and copper tap samples will need to be collected between June 1 and September 30 of 2026.

- 5. Is an approved water quality monitoring plan on file (i.e. briefly summarize plan and needed additions): Not required for systems serving less than 10,000 service connections.
- 6. Status of Drinking Water Source Assessment Program (DWSAP)

 Discussion and appraisal: The Source Water Assessments were completed by the Division's Sacramento District Office in 2003.
- 7. Emergency Response Plan (ERP) As a system serving less than 3,300 population, the District was not required to conduct a vulnerability assessment and ERP under the Bioterrorism Preparedness and Response Act of 2002. The Division, however, encourages all community water systems to complete an ERP. On November 4, 2018, the Division received an updated ERP for the District. The current ERP identifies personnel and their responsibilities, available resources and contact numbers, and designates the District's office as the emergency operations center. The ERP provides a general outline of what will be done in the event of an emergency. All steps listed appear to be reasonable and prudent.
- 8. Was the annual Consumer Confidence Report (CCR) sent to the customers? Yes. the CCR was posted on the District's website and customers were notified of its location.

 Date sent? Posted June 2022 Is a copy of the report on file with DDW? Yes

 Are there needed additions or changes? No, the 2021 CCR met all regulatory requirements.

H. OPERATION AND MAINTENANCE

1. Planning and Personnel

Are system improvements made in accordance with the Waterworks Standards? Reportedly, they are.

Does the utility have up-to-date distribution system maps? Yes

Is up-to-date copy of system schematic on file? Yes.

What is the minimum grade requirement? The Distribution system is classified as a Grade D2 distribution system, which requires a state-certified Grade D2 or higher chief distribution operator and Grade D1 or higher shift operators. The treatment plant is classified as a Grade T3 treatment plant, which requires a state-certified Grade T3 or higher chief treatment operator and Grade T2 or higher shift operators. Reportedly, there are a total of five operators on staff in the District. However, the Division does not have this information. The District shall provide the names of all operators, their Treatment and Distribution grades, certificate numbers, and expiration dates to the Division. In addition, the District shall provide this information to the electronic Annual Reports to the Division as required.

Table 17 – List of Certified Personnel

Name	Title	Grade
Jason Hoffman	Chief Operator	T4, D3
Cassandra Barnhill	Operator	T3, D2
Brian Freese	Operator	T3
Julie Mitchel	Operator	T5, D2
Harry Barnhill	Operator	T2

2. Cross-Connection Control Program

Name of cross-connection control inspector(s): <u>The District's Contract Operator</u>, <u>Jason Hoffman</u>, is responsible for all device testing and verification of potential cross-connections that require a backflow prevention device.

Is there a copy of the cross-connection control ordinance on file? Yes, on May 7, 2007, the Division received a copy of the District's Cross-Connection Control Ordinance as well as a list of connections supplied through backflow prevention devices and a copy of the letter mailed to each customer at the identified locations.

Table 18 – Backflow Prevention Devices

	Total Number in System	Number Installed	Number Tested	Number Failed	Number Repaired/ Replaced
2017	102	3	102	0	0
2018	102	0	58	0	0
2019	102	0	58	0	0
2020	59	0	59	0	0
2021	63	4	59	0	0
2022	63	0	63	0	0

Discussion and appraisal: It's not clear when the last cross-connection control survey was performed by the District. The Districts designated cross-connection control program coordinator is Jason Hoffman (AWWA Backflow no. 33018 and Cross Connection no. 03223). Also, the District has Harry Barnhill (AWWA Backflow no. 19327) The 2022 electronic Annual Report to the Division did not contain the date(s) that the last cross-connection survey was performed. Therefore, it is not clear if there exist other possible cross-connections where devices are needed. The Water system needs to conduct a cross-connection control survey. For several years the District has required all new service

connections to install a backflow prevention device. While the practice was very proactive, it may not have been necessary or required. Customers that have a cross-connection control device are required to have the device tested at least annually by a certified backflow device tester, as well as any necessary repairs or replacement.

3. Complaints

Describe complaint program The District maintains records of complaints including nature of complaint, location of complaint, and resolution.

Discussion and appraisal The District reported two pressure complaints in 2022, which they "...inspected properties, and helped review problems."

4. Emergency Response

Is an up-to-date emergency notification plan on file? No, the last ENP was received May 18, 2012. The District needs to update the ENP and submit a copy to the Division.

Emergency response plan The District completed an Emergency Response Planning Template for Public Drinking Water Systems, provided by the Rural Community Assistance Partnership, and submitted it to the Department on May 23, 2008.

Notification of ODW of significant system problems The District operators are aware that the Department should be notified of any significant problems.

Discussion & appraisal The District's current Water Quality Emergency Notification Plan is current and meets all requirements.

5. Main Disinfection Program

Describe main disinfection program for new & repaired mains The District disinfects new water mains with calcium hypochlorite tablets, providing a dosage of approximately 50 ppm for at least 12 hours, flushes the highly chlorinated water, and collects a bacteriological sample. Once the District receives a total coliform absent result, the main is placed in service. In order to return service to affected customers as soon as possible, when the District must depressurize a section of water main for repair, they chlorinate to over 100 ppm using liquid sodium hypochlorite, refill the depressurized section of pipe with water, and flush shortly after. Following flushing of the water main, the District collects a bacteriological sample.

Does the main disinfection program comply with AWWA specifications? Yes.

Discussion and appraisal The District follows AWWA procedures when installing new water mains. The District should provide notification to any effected customers whenever it is necessary to depressurize a portion of the distribution system for repairs. The notification should include a brief explanation of what is occurring and what steps they may wish to take in order to ensure that the water from the tap is safe once service is re-established.

6. Valve Maintenance Program

Describe program Make sure the valves are accessible every year.

Are number and location of valves satisfactory? Reportedly, the number and location of valves is satisfactory for the most part. Improvements are made when roadwork is being done or mains are replaced.

Discussion and appraisal (i.e., are valves recorded on maps available to field crews? Are all valves located with valve covers raised to grade?) Reportedly, all valve covers are raised to grade and maps are available to all water system employees. Reportedly, all valves are exercised annually.

7. Flushing

Describe flushing program While the District does not have a systematic flushing program, the water mains are flushed once each year when the fire hydrants are flushed and in response to complaints.

Approximate number of dead ends	23	3	_ Perc	ent with flu	ushing	valve	es	411
Discussion and appraisal As eviden	ced by	the ab	sence (of complain	ts, the	main [·]	flushing	program
appears to be adequate.	-							_

I. RESILIENCY AND PREPAREDNESS

(State Water Board Resolution # 2017-012)

1. FIRE

Is a Defensible Space of 100 feet (California Public Resources Code, 4291) maintained around all structures managed by this CWS? No, there is less than 100 feet from the filtration intake facilities and the nearest property lines. The District has cleared the space around all facilities to their property line.

2. FLOODING

Are any of the drinking water facilities vulnerable to flooding? No.

DROUGHT

Is the system prepared for drought related shortages or outages (interties, backup supply, increased storage) The District has no interties with other public water systems and is reliant on a single raw water source, the Boardman Canal. Reportedly, PCWA's water supply is much greater than the total demands of all systems that they supply, so drought related shortages or outages may not be likely to impact the District. The PCWA does shut down portions of their canal system for maintenance and has had outages due to canal breaks. The treatment plant is equipped with three finished water filters and would be able to meet maximum day demands through the treatment plant alone with one filter out of service.

4. BACKUP POWER

Is backup power available via permanent generators or does the water system have portable generators? Yes, a 60-kW propane generator with AutoStart upon loss of power is located at the treatment plant.

If liquid fuel is used is it properly contained and stored away from source? N/A, propane

J. OVERALL SYSTEM APPRAISAL

The source and storage capacity meets Waterworks Standards. The District consistently meets all filtration requirements and provides sufficient contact time to achieve the required 3-log (99.9%) reduction in *Giardia* cysts and 4-log (99.99%) reduction in viruses through filtration and disinfection. However, there were some deficiencies that were found during the inspection. Those deficiencies are noted in Appendix A Compliance Inspection Findings.

The District shall provide the Division with copies of the filter evaluations performed by the District including comments, conclusions, and planned maintenance or repairs, if any.

K. APPENDICES

Appendix A: Compliance Inspection Findings

Appendix B: Treatment Plant Classification Worksheet

Appendix C: Distribution System Classification Worksheet

Appendix D: Emergency Notification Plan Template

Appendix E: Disinfections Byproducts Reporting Form

Appendix F: SWTR Monthly Monitoring Summary Form

Appendix G: SWRCB - ENVIRONMENTAL INFORMATION FORM

Report prepared by:

Michael Tolin P.E.

Associate Sanitary Engineer

March 8, 2024

Date

Appendix A: Compliance Inspection Findings

PWS Name: Christian Valley Park CSD PWS Number: 3110034

Item No.	Description of Defect or Hazard	Response Deadline
1	The lid on the pre-chlorination hypochlorite carboy was missing and the chemical was exposed to the environment and insects, rodents, dust, and dirt could contaminate the chemical.	Corrected 2/24/24
2	The lid on the coagulant carboy was missing and the chemical was exposed to the environment and insects, rodents, dust, and dirt could contaminate the chemical.	Corrected 2/24/24
3	The graduated feed-rate cylinder for the pre-chlorination hypochlorite did not have a cap or screen to keep out insects, dust, and dirt.	Corrected 2/24/24
4	The graduated feed-rate cylinder for the coagulant did not have a cap or screen to keep out insects, dust, and dirt	Corrected 2/24/24
5	Upon inspection of the WTP intake at PCWA's Bowman Canal, it was noted that some large diameter trees were removed adjacent to the canal. There were two additional pine trees between the canal and the levee above the WTP. Given, that this year there is a significant amount of rainfall, the Division is concerned that if the ground were to become saturated and the trees were to be blown down, the potentially large "root ball" could severely weaken the levee between the Bowman Canal and the WTP. If the levee were to fail, the WTP would be flooded, and the Bowman Canal could potentially fail. One tree already fell nearby, and damaged some of the fencing at the WTP which could have damaged the WTP as well. The District shall investigate the situation and report back to the Division any recommendations they have on the situation.	4/1/24
6	There was a timber hatch covering the plant intake. Some of the wood was beginning to decay and split. This should be repaired.	5/31/24
7	It was noted that the three outfall weirs at the serpentine sedimentation basin were covered with sludge and the troughs had a layer of sludge on the bottom. The sludge may potentially break loose and possibly overload the filters and/or lead to mudball formation if the pressure filters. This has reportedly been cleaned by the operations staff, but the Division will need photographic evidence to confirm the work has been completed.	Corrected 3/4/24
8	It appeared that there was significant build-up of sludge on the tube settlers, the overflow weirs, and the overflow trough leading to the filters. There appeared to be depressions in the tube settlers that may signify damage. The sludge build-up is concerning to the Division because sloughing of the sludge may occur. If significant sloughing of sludge does occur, it could lead to plugging or damage of the filter feed pumps, and/or overloading the filter(s). This may lead to filtration problems such as break-through, shortened filter runs, and/or mudballs in the media. This has reportedly been cleaned by the operations staff, but the Division will need photographic evidence to confirm the work has been completed.	Corrected 3/4/24
9	There are some pvc pipes that are used for the transfer of water between the sludge basins and the sloped area between the sedimentation basins and the sludge basins. These lines are on the ground surface and could be damaged. It is rather interesting that some of these pipes have been exposed to sunlight for an extended time and are discolored such that the exterior of these pipes is turning a color that looks very similar to purple recycled water lines. According to the 2/24/24 email from the water system, the exterior of the discolored pipes were repainted white.	Corrected 2/24/24

10	Tanks 01 and 02 have drain lines (approximately 3- or 4-inch diameter) that are used for sampling purposes with/out cam-lock caps attached. These have since been partially corrected as per a 2/24/24 email from the Operator. Additional documentation regarding the installation of a sample tap at these locations are anticipated.	4/1/24
11	Tanks 01 and 02 have drain lines (approximately 8-inch diameter) that need a flange, screen, or some other covering in order to keep rodents or debris from entering the line.	Corrected 2/24/24
12	The Water system is required to submit supporting documentation for the permit amendment request that was received on 2/26/24 that includes CEQA documentation, reservoir data sheets, and any other supporting documentation for the two storage reservoirs. Reportedly, the Operator is in the process of addressing this.	8/30/24
13	The District needs to review their BSSP and submit an updated BSSP to the Division for review and approval. Reportedly, the Operator is in the process of addressing this.	Updated BSSP submitted 3/5/2024
14	In the distribution system, upon inspection of the pressure valves, it was noted that there was some standing water in the bottom of the vault. Care needs to be taken to ensure that the vault is not flooded, and the equipment does not become inundated with water.	5/31/24
15	There is a 1-1/2- inch diameter valve at the bottom manifold pipe in the filter gallery that needs a threaded cap. This has since been corrected as per a 2/24/24 email from the Operator.	Corrected 2/24/24
16	There is a 1-inch diameter PVC pipe connected to the air-relief valve that needs a screen to keep out dirt, small rodents, and insects. This has since been corrected as per a 2/24/24 email from the Operator.	Corrected 2/24/24
17	VOCs are overdue. If the monitoring has been completed, the water system shall direct the contract laboratory to submit the results to the Division electronically. If the monitoring has not been completed, the Water system shall collect the samples for analyses, and direct their contract laboratory to submit the results electronically to the Division once completed.	2024
18	The monitoring data for all SOCs are overdue. If the monitoring has been completed, the water system shall direct the contract laboratory to submit the results to the Division electronically. If the monitoring has not been completed, the Water system shall collect the samples for analyses, and direct their contract laboratory to submit the results electronically to the Division once completed.	2025
19	The District is required to conduct routine monitoring for TTHMs and HAA5s each quarter. According to Division records, there are a number of quarters of DBP monitoring that are missing. The District has submitted the second quarter results for 2023. Prior to that, the most recent monitoring on file is April of 2022. If the monitoring has been completed, the water system shall submit the results to the Division. The District shall continue to monitor quarterly for TTHM's and HAA5's.	quarterly
20	Reportedly, there are a total of five operators on staff in the District. However, the Division does not have this information. The District shall provide the names of all operators, their Treatment and Distribution grades, certificate numbers, and expiration dates to the Division. In addition, the District shall provide this information to the electronic Annual Reports to the Division as required.	Corrected 3/3/24
21	The 2022 electronic Annual Report to the Division did not contain the date(s) that the last cross-connection survey was performed. Therefore, it is not clear if there exist other possible cross connections where devices are needed. The Water system needs to conduct a cross-connection control survey.	8/30/24

Appendix B: Treatment Plant Classification Worksheet

System Name	System Number	Treatment Facility	Point Calculation	Classification
Christian Valley Park	3110034	Water Treatment Plant	46	To
Community Services	3110034	Water Treatment Flant	40	13

Treatment Classification

Section 64413.1 Classification of Water Treatment Facilities

Table 64413.1-A Water Treatment Facility Class Designation

Total Points	Class
Less than 20	T1
20 though 39	T2
40 through 59	T3
60 through 79	T4
80 or more	T5

Section 64413.1(b). The calculation of total points for each water treatment facility shall be the sum of the points derived in each of paragraphs (1) through (13) except where a treatment facility treats more than one source, in which case the source with the highest average of each contaminant shall be used to determine the point value in paragraphs (2) through (5).

Section 63750.85. "Water treatment facility" means a group or assemblage of structures, equipment, and processes that treat or condition a water supply, affecting the physical, chemical, or bacteriological quality of water distributed or otherwise offered to the public for domestic use by a public water system as defined in Health and Safety Code Section 116275. **Facilities consisting of only disinfection for which no** *Giardia* **or virus reduction is required pursuant to Section 64654(a) are not included as water treatment facilities.**

INSTRUCTIONS: For each paragraph item that applies to the system, place the proper Point Value in the calculation box. For paragraphs (1), (2), (3), (4), (7), (8), (9), (12), and (13), select one calculation only (whichever is higher) for each paragraph. For paragraphs (5), (6), (10), and (11), select all calculations that apply for each paragraph. Total the calculations and determine the system's classification.

Paragraph	Point Value	Calculation
(1) Source Water Used by Facility		
Groundwater and/or purchased treated water meeting primary and secondary drinking water standards, as defined in Section 116275 of the HSC	2	
Water that includes any surface water or groundwater under the direct influence of surface water	5	5
(2) Influent Water Microbiological Quality, Median Coliform Density, Most Probable Number Index (MPN) (a)		
Less than 1 per 100 mL	0	
1 through 100 per 100 mL	2	2
Greater than 100 through 1,000 per 100 mL	4	
Greater than 1,000 through 10,000 per 100 mL	5	
Greater than 10,000 per 100 mL	8	
(3) Influent Water Turbidity, Maximum Influent Turbidity Level, Nephelometric Turbidity Units (NTU) (b)		
Less than 15	0	
15 through 100	2	2
Greater than 100	5	
(4) Influent Water Perchlorate, Nitrate, Nitrite, and Nitrate+Nitrite Data Average		
Less than or equal to the MCL as specified in Table 64431-A	0	0
For each contaminant greater than its MCL	5	
(5) Influent Water Chemical and Radiological Contamination, Contaminant Data Average (c)		
Less than or equal to the MCL	0	0
Greater than the MCL	2	
5 times the MCL or greater	5	
(6) Surface Water Filtration Treatment		
Conventional, direct, or inline	15	15
Diatomaceous earth	12	
Slow sand, membrane, cartridge, or bag filter	8	
Backwash recycled as part of process	5	5
(7) The points for each treatment process utilized by the facility and not included in paragraph (6) that is used to reduce the concentration of one or more contaminants for which a primary MCL exists, pursuant to Table 64431-A, Table 64444-A, and Table 4 of Section 64443, shall be 10. Blending shall only be counted as a treatment process if one of the blended sources exceeds a primary MCL.	10	

Form Revised: 1/17/2008

(8) The points for each treatment process not included in paragraphs (6) or (7) that is used to reduce the concentration of one or more contaminants for which a secondary MCL exists, pursuant to Tables 64449-A and 64449-B, shall be 3. Blending shall only be counted as a treatment process if one of the blended sources exceeds a secondary MCL.	3	
(9) The points for each treatment process not included in paragraphs (6), (7), or (8) that is used for corrosion control or fluoridation shall be 3.	3	3
(10) Disinfection Treatment		
Ozone	10	
Chlorine and/or chloramine	10	10
Chlorine dioxide	10	
Ultra violet (UV)	7	
(11) Disinfection/Oxidation Treatment without Inactivation Credit		
Ozone	5	
Chlorine and/or chloramine	5	
Chlorine dioxide	5	
Ultra violet (UV)	3	
Other oxidants	5	
(12) The points for any other treatment process that alters the physical or chemical characteristics of the drinking water and that was not included in paragraphs (6), (7), (8), (9), (10), or (11) shall be 3.	3	
(13) The points for facility flow shall be 2 per million gallons per day or fraction thereof of maximum permitted treatment facility capacity, up to a maximum of 50 points; except that for facilities utilizing only blending, the points shall be based on the flow from the contaminated source and the dilution flow required to meet the MCL(s) specified in Tables 64431-A, 64444-A, 64449-A, 64449-B, and Table 4 of Section 64443.	50 max	4
Total Points =		46

⁽a) Median of all total coliform analyses completed in the previous 24 months.

- (b) For facilities treating surface water or groundwater under the direct influence of surface water, based on the previous 24 months of data, except that if turbidity data is missing for one or more of the months, the points given for turbidity shall be 5. The maximum influent turbidity sustained for at least one hour according to an on-line turbidimeter shall be used unless such data is not available, in which case, the maximum influent turbidity identified by grab sample shall be used. For facilities that have not been in operation for 24 months, the available data shall be used. For facilities whose permit specifies measures to ensure that influent turbidity will not exceed a specified level, the points corresponding to that level shall be assigned.
- (c) The points for other influent water contaminants with primary MCLs shall be a sum of the points for each of the inorganic contaminants (Table 64431-A), organic contaminants (Table 64444-A) and radionuclides (Table 4, Section 64443). The points for each contaminant shall be based on an average of the three most recent sample results. If monitoring for a contaminant has been waived pursuant to Sections 64432(k), 64432.2(c) or 64445(d), the points shall be zero for that contaminant.

NOTES:
Points for influent water quality are for Iron and Manganese MCL exceedences occurring as follows:
Classified By:
Date
Date:

Appendix C: Distribution System Classification Worksheet

SYSTEM NAME	SYSTEM NO.	POPULATION	CLASSIFICATION
Christian Valley Park Community Services District	3110034	1,800	D2

Distribution Classification

Section 64413.3. Distribution System Classification

Table 64413.3-A

Population	Class
1,000 or less	D1
1,001 through 10,000	D2
10,001 through 50,000	D3
50,001 through 5 million	D4
Greater than 5 million	D5

Section 64413.3 (b) The class determined above shall be upgraded by one level if the sum of all points (1) through (6) below exceeds 20.

INSTRUCTIONS - For "system characteristics" that apply to your system, place the proper Point Value in the calculation box. For system characteristics (1) through (4) select one calculation only (whichever is higher). Total your calculations and adjust your system's classification if required.

System Characteristic	Point Value	Calculation
(1) Number of Pressure Zones		
1 to 3 Pressure Zones	0	0
4 to 10 Pressure Zones	4	
More than 10 Pressure Zones	6	
(2) Number of Disinfectants Added in the Distribution System		
No Disinfectant Added in the Distribution System	0	
A Single Disinfectant Added in the Distribution System	5	5
Multiple Disinfectants in the Distribution System*	8	
(3) Largest Single Pump in the Distribution System		
Pump(s) up to 50 hp	4	4
Pump(s) of 50 hp or more	6	
(4) Number of Distribution Storage Reservoirs**		
1 to 5 Distribution Storage Reservoirs	4	4
More than 5 Distribution Storage Reservoirs	6	
(5) One or More Uncovered Distribution Reservoirs	10	
(6) Customers Served Non-Potable Water***	6	
System Characteristics Total =	=	13

Notes

Dated: January 12, 2001

^{*} i.e., blending chlorinated and chloraminated supplies

^{**} Hydropneumatic tanks are not considered reservoirs

^{***} Does not apply to wholesalers if the only customers served non-potable water are served by its retailers

Appendix D: Emergency Notification Plan Template

WATER QUALITY EMERGENCY NOTIFICATION PLAN

Pu	blic Water System Name:			Date:	
	blic Water System No.:				
Pu	blic Water System Address:				
Th	e following persons have been designate	ed to implement the plan upon no	otificati	on by the Divi	sion of
	inking Water, SWRCB that an imminent				
	ater Utility:	<u> </u>		Telephone	
	Contact Name & Title	Email Address [Day	Evening	Cell
_					
1					
2.					
3.					
_					
	e implementation of the plan will be carri epartment personnel:	ed out with the following DDW-S	SWRCE	} and County I	Health
	DW-SWRCB & County Health Departme	ents:		Telephone	es
	Contact Name & Title			Day .	Evening
1.	Salvador Turrubiartes, P.E.	Salvadar Turruhiartas Quatar	, (9	16) 552-	(510) 415-
	Associate Sanitary Engineer	Salvador.Turrubiartes@water oards.ca.gov	D .	9998	5608
_	DDW-SWRCB	- Oarus.ca.gov			
2.	Austin Peterson, P.E.,	Austin.peterson@waterboards.ca.gov		(916)	(916)
	Sacramento District Engineer	,	34	41-5559	926-9577
	DDW-SWRCB			(700)	(500)
3.	Jason Phillippe, Director	Inhilliana Onlasan as man	_	(530)	(530)
	Placer County Environmental Health & Human Services	Jphillippe@placer.ca.gov	74	45-2341	745-2306
-	& Human Services				
4.	If the above personnel cannot be read	hed, contact:			
	Office of Emergency Services Wa	rning Center (24 hrs) (800) 8	852-75	50 or (916) 8 <i>4</i>	15-8911
	When reporting a water quality eme				
		oard – Division of Drinking Wate			
Δtt	ach a written description of the method or com	NOTIFICATION PLAN hination of methods to be used (radio	televisi	on door-to-door	sound truck
etc	.) to notify customers in an emergency. For	each section of your plan give an esti	mate of	the time required	d, necessary
per	sonnel, estimated coverage, etc. Consideration m	ust be given to special organizations (su	uch as s	chools), non-Engl	lish speaking
	ups, and outlying water users. Ensure that the rually implement them in the event of an emerger				
	nmunities.	icy. Examples of Houncation plans are	allacri c u	ioi laige, illeulu	illi allu sillali
_					
Re	eport prepared by:				
Sig	gnature and Title	Date			

E. JOAQUIN ESQUIVEL, CHAIR | ERIC OPPENHEIMER, EXECUTIVE DIRECTOR

PLAN I (Medium Community)

During regular working hours our people will contact the news media at television station KXYZ to broadcast the necessary warning. The local radio stations will also be contacted. The television and radio personnel are available at all hours. As a follow-up measure, we will also contact the Daily Bee, a local newspaper that serves both Ourtown and Hometown.

The warnings will be issued in both English and Spanish to cover all members of the community. Outlying areas of the water service area (such as <u>Isolated Canyon</u> and <u>Lonesome Mountain</u> subdivisions) will also be notified by sound truck and/or handbill distributed to their respective areas. Both of these areas are very small and this can be done quite quickly.

A special telephone answering service can also be quickly set up at the utility headquarters (using the regular company numbers) to answer questions that will come in from consumers. Questions are anticipated, especially from the Hometown area, because that area is served by three different water companies. A map will be available to the telephone answering personnel to determine the water company serving the caller.

It is anticipated that the time for notification to the television and radio audiences will be very short. The areas served by handbill and sound truck will also be notified within an hour. For notification to be issued in other than normal hours, the same media will be contacted and an announcement will be scheduled for as long as is necessary. A sound truck(s) will be used in the early morning hours to quickly alert the people not listening to their radio or television.

PLAN II (Small Community)

Our community is very small and the most efficient means of notification will be both sound truck and handbill. It is estimated that the entire service area can be covered in less than three hours.

PLAN III (Large Community)

The same plan as implemented in Plan I should be used here with the exceptions noted. All the news media will be contacted in the entire metropolitan area. This includes all television and radio stations and all local and general area newspapers. Maps have been prepared to be distributed to the media to locate the boundaries of the water company. This system is large enough that it may only be necessary to notify some of the water users. This information will be transmitted to the media and an answering service at the water company will respond to consumers' calls. Unless the problems are limited to isolated areas it is unreasonable to assume that contact can be made through sound truck or handbill.

Appendix E: Disinfections Byproducts Reporting Form

Quarterly TTHM Report for Disinfection Byproducts Compliance (in µg/L or ppb)

2																	d			
system Name:									Syster	System No.:				Year: 		1	Qua	Quarter:		
Ye	Year:	2	2023			2024	24			2025	5			2026				2027		
Quarter:	er: 1st Qtr.	r. 2nd Qtr.	3rd Qtr.	4th Qtr.	1st Qtr.	2nd Qtr.	3rd Qtr.	4th Qtr.	1st Qtr.	2nd Qtr.	3rd Otr.	4th Qtr.	1st Qtr. 2	2nd Qtr. 3	3rd Qtr. 4th	4th Qtr. 1st	1st Qtr. 2nd	2nd Qtr. 3rd Qtr.	-	4th Qtr.
Sample Date (month/date):	:e):																			
Site 1																				
Site 2																				
Site 3																				
Site 4																				
Site 5																				
Site 6																				
Site 7																				
Site 8																				
Site 9																				
Site 10																				
Site 11																				
Site 12																				
Quarterly Average																				
Running Annual Average	0																			
Meets Standard?* (check box)	√es N	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Yes	Yes	Yes	√es No	Yes No	Yes	Yes	Yes No	Yes N	Yes	Yes	Yes \	Yes Yes	s Yes	s Yes	√es No	Yes	
Number of Samples Taken	1	2	2	2]]]	1]]]	
dentify the sample locations in the table below.	ns in the t	able bel	MC																	
Sito		Somolo	10:10:00							2000	, 2									
Olle		Sallipie	Sallipie Location	_					<u></u>	Colline IIIs.										
1																				
2																				
3																				
4																				
2																				

*If, during the first year of monitoring, any individual quarter's average will cause the running annual average of that system to exceed the standard, then the system is out of compliance at the end of that quarter.

Date

Signature

10

∞

0

9

Appendix F: SWTR Monthly Monitoring Summary Form

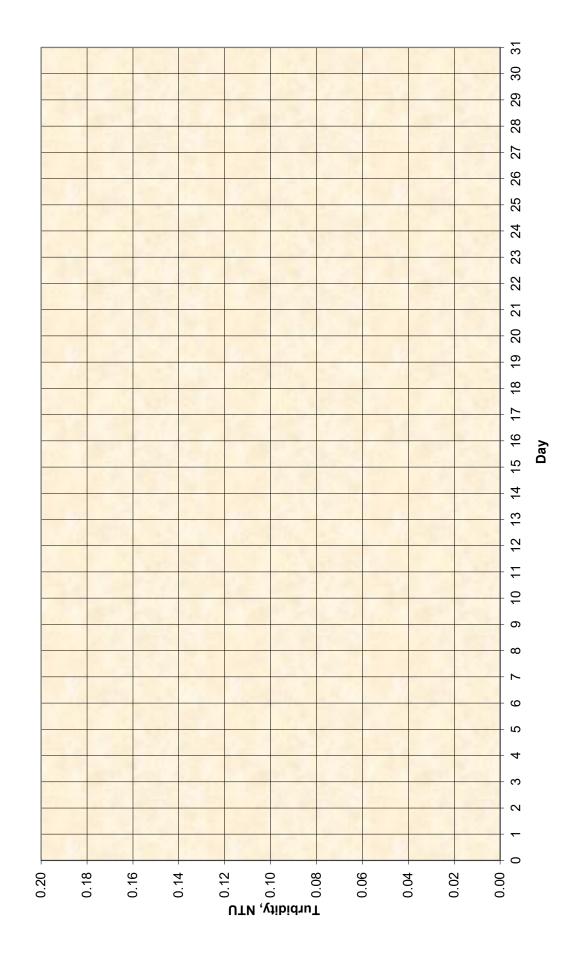
MONTHLY SUMMARY OF MONITORING FOR SURFACE WATER TREATMENT REGULATIONS

System N	√ame:						Syste	em Number:		
Plant Na	me:							Month/Year:		
			ļ		Treated wa	ater turbidities	every four ho	ours (NTU) ¹		
Date	Peak Recycled Water Turbidity	Peak Raw Water Turbidity ²	Peak Settled Water Turbidity	Midnight to 4:00 am	4:00 am to 8:00 am	8:00 am to noon	Noon to 4:00 pm	4:00 pm to 8:00 pm	8:00 pm to Midnight	Average
1										-
2										-
3								<u> </u>		-
4										-
5										-
6										-
7	}	1								-
8 9										
10										_
11										_
12										-
13										-
14										-
15										-
16				-						-
17								<u> </u>		-
18										-
19										-
20										-
21 22										-
23										-
24		1								-
25										_
26										-
27										-
28										-
29										-
30										-
31										-
Avg.	-	-	-	-	-	-	-	-	-	
² Raw wate	er turbidity musi	t be monitorea	discrete turbidity I after returned i crecycle, raw, a	flow.		ecord chart at f	our hour interv	als.		
Total Numb	ber of Samples	:	0				Number of rea	adings <= 0.3 N	ITU:	_
	s <= 0.3 NTU:			•			Average Efflue	-		-
			Me	eets Standard	(i.e. at least 95	5% of readings	are <= 0.3 NT	U) (Y/N)?		-
								turbidity value:		-
Average pe	ercent reduction	n during the m	onth = [(Averag			it NTU)/(Averag tion is greater th			•	-
						ion is greater ti	Iaii 00 70) (1714)):	•	
				Percentile		all turbidity read	lings:		50 th = 90 th =	-
						re less than the			95 th =	-
									98 th = 99 th =	-

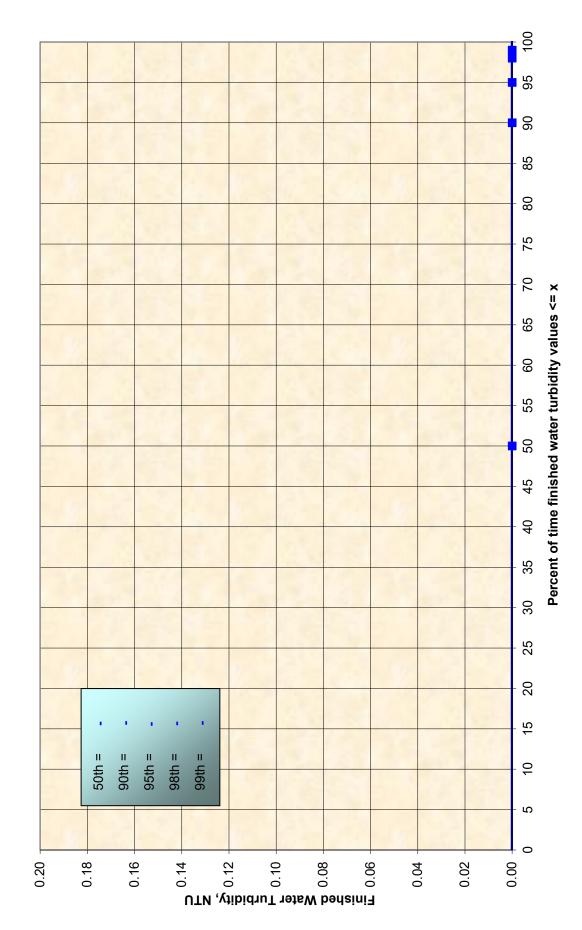
Combined Filter Effluent Reporting

Incidents of turbidity	greater than	1 NTU for	more than '	l hour.						
Date of Incident										
Value										
Incidents of turbidity	areater than	1 0 NTU fo	r more than	a 8 consecu	tiva houre v	vhile the nl:	ant is oners	iting		
	greater than	1.0101010	inore than	l o consecu	tive nours v	ville the pi	ant is opere	lting.		
Date of Incident Value										
value										
		<u>Ind</u>	ividual	Filter E	ffluent	Repor	<u>ting</u>			
Were individual filters mo Were there any trigger vio		corded at lea	-	15 minutes?	Yes	No No	_			
Incidents of turbidity	greater than	1.0 NTU in	two conse	cutive meas	urements t	aken no mo	re than 15	minutes apa	art.	
Date of Incident										
Value										
Filter Number										
Incidents of turbidity the first 60 minutes of	•									T
Date of Incident										
Value										
Filter Number										
Incidents of turbidity any time in each of th				cutive meas	urements t	aken no mo	ore than 15	minutes apa	art at	
Date of Incident										
Value										
Filter Number										
Incidents of turbidity any time in each of tw				cutive meas	urements t	aken no mo	ore than 15	minutes apa	art at	
Date of Incident										
Value					-				-	
Filter Number										

Turbidity Instrument Calibration


Indicate the date that the turbidimeters that are used for regulatory monitoring purposes were calibrated:

Date	Which Turbidimeter	Which standards used, primary or secondary	Date	Which Turbidimeter	Which standards used, primary or secondary


Disinfection Process Data

		Disinfectant	residual type (check one): • Free Chlorine	O Combined Chlorine	Other	
Incidents of chlorine	rociduale loc	e than 0 2 i	onm at the plant offli	iont:			
Date of Incident	Tesiduais les	s triair 0.2	opin at the plant emi	Jent.			
Duration							
Date Dept. Notified							
			ere residual is < 0.2 ppn ot less than 0.2 ppm for r		/N)? Yes		
	weet Stand	aru (i.e. is iic	ot less than 0.2 ppm for i	note than lour flours (1)	(N): Yes	-	
Number of distribution sy	stem residual sa	amples collec	ited:				
Number of distribution sy	stem samples fo						
Total number of residua	al and/or HPC s	0					
Number of samples with no detectable residual and HPC is not measured:							
Number of samples with						ł	
Number of samples for H					0		
Total number of sample	es with no residi	iai and/or ne	C > 500 CF0/IIIL.		U	J	
Compute V:							
Where V = [1 - (Total No.	. of samples with	n no residual	and/or HPC > 500)/(Total	al No. of residual and/or	r HPC samples collected)] x 10	00	
	V = _						
	Me	ets Standaı	rd (I.e. V >= 95%) (Y/N)	?			
	CIII		OF WATER	OLIAL ITY CA	OMDI AINTO		
	<u>301</u>	IIVIARI	OF WATER	QUALITY	JIVIPLAIN 13		
General Compla	ints:						
Type of Comp	plaint	Num	ber	Corı	ective Actions Taken		
Taste/Odo	or						
14310/040	,						
Color							
Turbidity	'						
Suspended S	olide						
- Сизреписи С	Olido						
Other (Descr	ribe)						
,	,						
Reports of Gasti	<u>rointestina</u>	l Illness	(attach addition				
Person Repo	rting	Dat	te	Corr	ective Actions Taken		
Attach an explanation of	any failure of the	e performanc	e standards or operating	criteria and corrective	action taken or planned.		
	-						
Signature:							
Date:							

Finished Water Turbidity

Probability Distribution of Finished Water Turbidity Data

Directions:

- 1. Select turbidity performance standard (i.e., 0.1, 0.2, 0.5, 1.0) at top of spreadsheet.
- 2. Enter a recycled, raw, and settled water turbidity value for each day. If there is no recycled water, then leave cells blank. For systems that take daily grab samples, report highest value. If any of the data is monitored continuously, then it is recommended that the 95th highest value is reported in lieu of the peak highest value.
- **3.** A discrete turbidity value (filtered water) must be taken off the record chart at four hour intervals. If plant is off-line at time that turbidity value is to be taken, then do not report value. Leave cell blank or type in text (i.e., "off" or "-").
- 4. Be sure to fill out pages 2 and 3.

If you have any questions, please contact:
Guy Schott, P.E.
Associate Sanitary Engineer
Department of Health Services
Drinking Water Field Operations Branch
Mendocio District
50 D Street, Suite 200
Santa Rosa, CA 95404
707-576-2732
e-mail: gschott@dhs.ca.gov

Display Setting: For best screen resolution, it is recommended that the screen setting be set to 1024 by 768 pixels or greater. Given is a step by step example to reset setting: <Start>, <Settings>, <Control Panel>, <Display>, <Settings> Now adjust resolution to at least 1024 by 768 pixels.

Print Setting: All worksheets are set to print in color. To print in black & white, select the Black and White setting. To select this option go to the worksheet you want to print in black and white and select <File>, <Page Setup>, <Sheet>, and then select "Black and White."

Appendix G: SWRCB - ENVIRONMENTAL INFORMATION FORM

STATE WATER RESOURCES CONTROL BOARD WATER SUPPLY PERMIT ENVIRONMENTAL INFORMATION FORM¹

(To be completed by applicant – attach additional sheets as needed)

General Information

1.	Nam	e of pro	ject:						
2.	Wate	er Syster	n number:		New Permit	Permit Amendment			
3.	Nam	Name of project: Water System number: New Permit Permit Amendmen Name of applicant or project sponsor:							
			1 0						
	City	:			Zip:				
4.	Nam	e of con	tact person fo	r this proje	ect:				
	Addı	ress:	1	1 3					
	City	:		Zip:	Phone Num	nber:			
5.	Addı	ress of p	roject:			ber:			
6.	Secti	ion, tow	nship, range, b	pase and m	eridian:				
7.									
		C	0 1 0						
8.	List	and desc	cribe any other	r related pe	ermits and other pub	olic approvals required for			
	this 1	project, i	including thos	e required	by city, regional, st	ate and federal agencies:			
				-		_			
9.	Does	s the pro	ject require a	conditiona	l use permit by a pu	ıblic agency?			
	\Box v	es \Box 1	10						
	Does	s the pro	ject require a	coastal per	mit by a commission	on or public agency?			
	☐ y	es 🔲 1	10	_	-				
10.	Did	a previo	us CEQA Doc	ument cov	er the project?	yes no unknown			
11.	Is the	e site on	or next to a d	esignated s	scenic highway?	yes no unknown			
	If ye	s, give the	he name of the	e highway					
12.	Desc	ribe the	existing syste	m, if prese	ent (fill in blanks or	provide attachment, e.g.,			
	appli	ication d	lescription)						
	a.	Num	ber of service	connection	ns:				
	b.	Sourc	ce information	ı :					
		(1)	Groundwate	er (well ca	pacity):				
		(2)	Surface wat	ter:					
		(3)	Connection	s with othe	er systems:				
		(4)	Emergency	connection	n:				
	c.	Treat	ment:						
	d.	Stora	ge facilities						
		(1)	Tanks (phys	sical dimer	nsions, capacity, and	d condition):			

¹ Not for use with SDWSRF projects

		0 ' (C ' 1 1'')
	(2)	Open reservoirs (surface area, capacity, and condition):
e.		ly describe how water is currently transmitted from the source(s) teatment facilities:
f.		ly describe how finished water is currently transmitted from the nent/storage facilities to consumers (distribution system):
	cription	
t Desc	cription	
t Desc	cription	(fill in blanks or provide attachment, e.g., application description)
Description Descri	ribe pro	(fill in blanks or provide attachment, e.g., application description ject objectives: ion (give description of the precise location and boundaries and
Description Descri	ribe pro	(fill in blanks or provide attachment, e.g., application description) ject objectives:
Description Descri	ribe pro	(fill in blanks or provide attachment, e.g., application description) ject objectives: ion (give description of the precise location and boundaries and
Desc. Proje	ribe pro	(fill in blanks or provide attachment, e.g., application description) ject objectives: ion (give description of the precise location and boundaries and raphic map and site plan):
Description Descri	eription ribe project location topograms	(fill in blanks or provide attachment, e.g., application description) ject objectives: ion (give description of the precise location and boundaries and
Description Descri	ribe pro	(fill in blanks or provide attachment, e.g., application description) ject objectives: ion (give description of the precise location and boundaries and raphic map and site plan): area: area: acres. Additional service connections: information:
Description Descri	eription ribe project location truction source if Groun	(fill in blanks or provide attachment, e.g., application description) ject objectives: ion (give description of the precise location and boundaries and raphic map and site plan): area:acres. Additional service connections: information: indwater (well capacity): ce water:
Description Descri	eription ribe pro ect locati h topogr source i Groui Surfa Conn	(fill in blanks or provide attachment, e.g., application description) ject objectives: ion (give description of the precise location and boundaries and raphic map and site plan): area: area: acres. Additional service connections: information: ndwater (well capacity): ce water: ections with other systems:
Proje attacl Cons New a. b. c. d.	eription ribe pro ect locate h topogra source is Groug Surfa Conn Emer	(fill in blanks or provide attachment, e.g., application description) ject objectives: ion (give description of the precise location and boundaries and raphic map and site plan): area: area: acres. Additional service connections: information: ndwater (well capacity): ce water: ections with other systems: gency connection:
Proje attacl Cons New a. b. c. d. Facil	eription ribe project location truction source i Groun Surfa Conn Emer ities (ine	(fill in blanks or provide attachment, e.g., application description) ject objectives: ion (give description of the precise location and boundaries and raphic map and site plan): area:acres. Additional service connections: information: ndwater (well capacity): ce water: ections with other systems: egency connection: dicate whether they are new, modifications, removals, or
Proje attacl Cons New a. b. c. d. Facil	eription ribe product location source in Surfa Conn Emerities (incoments	(fill in blanks or provide attachment, e.g., application description) ject objectives: ion (give description of the precise location and boundaries and raphic map and site plan): area:acres. Additional service connections: information: ndwater (well capacity): ce water: ections with other systems: egency connection: dicate whether they are new, modifications, removals, or

	b.	Storage facilities
		1) Tanks (physical dimensions and capacity):
		2) Open reservoirs (surface area and capacity):
	c.	Fransmission facilities (give size of pumps, and length and diameter of sipelines - indicate if pipelines will be located entirely within right-of-ways):
	d.	Distribution facilities (give size of pumps, and diameter and length of nains – indicate if mains will be located entirely within right-of-ways):
	e.	Appurtenant structures:
	f.	Parking facilities:
	G.	Staging areas:
	g.	otaging areas
	h.	Proposed lighting:
	111.	Toposea lighting.
6.		project involve disposal of waste?
		OTE: Generation, handling, disposal and transport of spent filters for the noval of uranium and arsenic in drinking water may trigger additional
	r	gulatory licensing or permitting.
	a.	f yes, identify the waste stream and describe handling and disposal:
7.	Descri	e any grading or excavation work:

O	337:11	41							
8.	Will the project involve an increase in capacity to meet the demands of any new connections or development?								
		a. Amount of capacity increase:							
	а. b.								
	c.	Needed to serve projected development? yes no unknown							
	О.	(1) Population basis for capacity determination (include year)							
		(a) Current population:							
		(b) Projected population:							
9.	If the	e project involves a variance, conditional use, or rezoning application, state							
		this and indicate clearly why the application is required:							
10.	Prop	osed construction scheduling:							
Envi	ronmei	ntal Setting							
Live	<i>i onniei</i>	nui Seung							
Inclu	de a dis	scussion of all the following detailed elements as applicable; if an element is							
		within the described area, give reasons or verify with investigative results.							
		facilities; conveyance lines; storage, points of diversion; staging areas; and							
		vice area as applicable. Use attachments if necessary.							
1.	Topo	ography and geology of the region							
	a.	Location of project area with regard to major topographical features:							
	1.	Elevations and alongs on majort site (for anoding / exercision entirities).							
	b.	Elevations and slopes on project site (for grading / excavation activities):							
	c.	Attach any soil or geologic reports available for the site							
2.	Land								
	a.	At project site:							
	b.	Adjacent to project site:							
	c.	Along pipeline alignments:							
	d.	At the point of diversion:							
3.	Vege	etation types							
		On Project Site Surrounding Area							
	Urba	nnized \square							
	Land	dscaped \Box							
	Rude	eral (Weedy)							
	Gras	Grassland							
		b/Chaparral							
		odland							
	Fore								
	Ripa	rian (Streamside)							

Wet	land				
a.	General I	Description of veg	getation:		
b.	Native T ₁	rees (number and	type on p	roject site)):
c.	Graded a	rea(% of project a	rea):		
		e (project site and			
a.		nt species:		-	
b.	Economic	cally or recreation	nally signi	ficant spec	cies:
Sur	face water for	atures (project site	and curr	ound area	1
a.	Lakes:				
a. b.					
	Streams: Estuaries				
C.		s: wetlands:			
d.			, <u>C</u>	4	
e.		, marshes and othe			
f.	-	oject near a Wild a		River?.	_ yes
Agr	icultural land	d on project site (a	cres):		
a.					ne farmland, or farmland of
	statewide	importance?			☐ yes ☐ no ☐ unknown
Is th	ne project site	e included on a list	t of hazar	dous mate	rial sites compiled pursuant
to C	overnment C	Code 65962.5?			🗌 yes 🔲 no 🔲 unknown
Is th	ne project loc	ated near an airstr	rip?		🗌 yes 🔲 no 🔲 unknown
a.					public private unkn
b.	Does it ha	ave lights for nigh	nt use?		yes no unknown
c.					d use plan or some other
					use conflicts with
					yes no unknown
d.	Is any par	rt of the project in	the path	of planes 1	taking off or landing?
			=		yes no unknown
	If so, wha	at are the new safe	ety risks p	osed by the	nat part of the project?
			ical sites,	architectu	re, landscapes, features,
stru	ctures, or obj	jects:			
Trac	ditional cultu	ıral places (e.g. sad	cred lands	s):	
				, 	

11. 12.			the coastal zone jurisdiction?			
Environmental Impacts						
		_	ms <u>known</u> to be applicable to the project or its effects? Discuss ted yes (attach additional sheets as necessary).			
ociow	Yes	No	ted yes (attach additional sheets as necessary).			
1. 2. 3.			Removal of mature native/heritage trees. Clearing of native vegetation and/or habitat. Interference with or blocking wildlife migration routes.			
4. 5. 6.			Effect on a special status species. Interference with or substantial use of recreational facilities. Change in ocean, bay, lake, or stream water quality or quantity.			
7. 8.			Alteration of existing drainage patterns. Change in existing features of any bays, tidelands, beaches, or hills, or substantial alteration of ground contours.			
9. 10. 11.			Substantial depletion of groundwater supplies. Change in groundwater quality. Loss of mineral resources.			
12.			Change in scenic views or vistas from existing residential areas, or public lands or roads.			
13. 14. 15. 16.			Change in pattern, scale or character of the general project area. Significant amounts of solid waste or litter. Change in dust, ash, smoke, fumes, or odors in the vicinity. Substantial change in noise or vibration levels in the vicinity			
17. 18.			(beyond the property line). Site on filled land or on slopes of 10 percent or more. Use or disposal of hazardous materials, flammables, or explosives.			
19. 20.			Substantial change in demand for municipal services. Substantial increase in traffic.			
21.			Substantial increase in fuel consumption (electricity, oil, natural gas, etc.).			
22.			Related to a larger project or series of projects.			
Discus	ssion:_					
-						
-						
	_	_				

	nown potentially significant environmental effects that may result if the mented (attach additional sheets as necessary):
duce to less	nitigation measures that will be incorporated into the project to avoid o han-significant any impacts described above (attach additional sheets a
duce to less	han-significant any impacts described above (attach additional sheets a
duce to less	han-significant any impacts described above (attach additional sheets a
duce to less	han-significant any impacts described above (attach additional sheets a
duce to less	han-significant any impacts described above (attach additional sheets a
duce to less	han-significant any impacts described above (attach additional sheets a
duce to less	han-significant any impacts described above (attach additional sheets a
duce to less	han-significant any impacts described above (attach additional sheets a
duce to less	han-significant any impacts described above (attach additional sheets a
duce to less	han-significant any impacts described above (attach additional sheets a
duce to less	han-significant any impacts described above (attach additional sheets a
duce to less	han-significant any impacts described above (attach additional sheets a

Certification I hereby certify that the statements furnished above and in the attached exhibits present the data and information required for this initial evaluation to the best of my ability, and that the facts, statements, and in formation presented are true and correct to the best of my knowledge and belief.

Signature:	Date		
_			
Name:	Position:		